Existence of solutions in the α-norm for partial functional differential equations with infinite delay
نویسندگان
چکیده
In this work, we prove a result on the local existence of mild solution in the α-norm for some partial functional differential equations with infinite delay. We suppose that the linear part generates a compact analytic semigroup. The nonlinear part is just assumed to be continuous. We use the compactness method, to show the main result of this work. Some application is provided.
منابع مشابه
Existence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملExistence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملExistence and Regularity of Local Solutions to Partial Neutral Functional Differential Equations with Infinite Delay
In this paper, we establish results concerning, existence, uniqueness, global continuation, and regularity of integral solutions to some partial neutral functional differential equations with infinite delay. These equations find their origin in the description of heat flow models, viscoelastic and thermoviscoelastic materials, and lossless transmission lines models; see for example [15] and [38].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012